Irish Standard I.S. EN 12101-3:2015 Smoke and heat control systems - Part 3: Specification for powered smoke and heat control ventilators (Fans) © CEN 2015 No copying without NSAI permission except as permitted by copyright law. #### I.S. EN 12101-3:2015 Incorporating amendments/corrigenda/National Annexes issued since publication: The National Standards Authority of Ireland (NSAI) produces the following categories of formal documents: I.S. xxx: Irish Standard — national specification based on the consensus of an expert panel and subject to public consultation. S.R.~xxx: Standard~Recommendation-recommendation~based~on~the~consensus~of~an~expert~panel~and~subject~to~public~consultation. SWiFT xxx: A rapidly developed recommendatory document based on the consensus of the participants of an NSAI workshop. This document replaces/revises/consolidates the NSAI adoption of the document(s) indicated on the CEN/CENELEC cover/Foreword and the following National document(s): NOTE: The date of any NSAI previous adoption may not match the date of its original CEN/CENELEC document. This document is based on: Published: EN 12101-3:2015 2015-08-26 This document was published ICS number: under the authority of the NSAI and comes into effect on: 13.220.99 2015-09-14 NOTE: If blank see CEN/CENELEC cover page NSAI T +353 1 807 3800 Sales: 1 Swift Square, F +353 1 807 3838 T +353 1 857 6730 Northwood, Santry E standards@nsai.ie F +353 1 857 6729 Dublin 9 W NSAI.ie W standards.ie Údarás um Chaighdeáin Náisiúnta na hÉireann This is a free page sample. Access the full version online. ## **National Foreword** I.S. EN 12101-3:2015 is the adopted Irish version of the European Document EN 12101-3:2015, Smoke and heat control systems - Part 3: Specification for powered smoke and heat control ventilators (Fans) This document does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with this document does not of itself confer immunity from legal obligations. In line with international standards practice the decimal point is shown as a comma (,) throughout this document. This is a free page sample. Access the full version online. This page is intentionally left blank **EUROPEAN STANDARD** EN 12101-3 NORME EUROPÉENNE **EUROPÄISCHE NORM** August 2015 ICS 13.220.99 Supersedes EN 12101-3:2002 #### **English Version** # Smoke and heat control systems - Part 3: Specification for powered smoke and heat control ventilators (Fans) Systèmes pour le contrôle des fumées et de la chaleur -Partie 3 : Spécifications relatives aux ventilateurs pour le contrôle de fumées et de chaleur Rauch- und Wärmefreihaltung - Teil 3: Bestimmungen für maschinelle Rauch- und Wärmeabzugsgeräte This European Standard was approved by CEN on 12 January 2015. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels | Con | tents | age | |----------|--|---------------------| | Europ | ean foreword | 7 | | Introd | uction | 8 | | 1 | Scope | . 10 | | 2 | Normative references | . 10 | | 3 | Terms and definitions, symbols and abbreviations | | | | Requirements | | | 4
4.1 | Response delay (response time) | | | 4.1.1 | Opening under wind load within a given time | | | 4.1.2 | Opening under snow load within a given time | | | 4.2 | Operational reliability | | | 4.2.1 | General | | | 4.2.2 | Application categories | . 13 | | 4.2.3 | Motor rating | . 14 | | 4.3 | Effectiveness of smoke / hot gas extraction | | | 4.3.1 | General | | | 4.3.2 | Gas flow and pressure maintenance during smoke and heat extraction test | | | 4.4 | Resistance to fire | | | 4.5 | Ability to open under environmental conditions | | | 4.5.1 | Opening under wind load within a given time | | | 4.5.2 | Opening under snow load within a given time | | | 4.6 | Durability of operational reliability | . 15 | | 5 | Testing, assessment and sampling methods | . 15 | | 5.1 | General | | | 5.2 | Test of response delay (response time) opening under wind, snow load within a given time. | | | 5.2.1 | Wind load | | | 5.2.2 | Snow load | | | 5.3 | Operational reliability | | | 5.3.1 | Application categories | | | 5.3.2 | Motor rating | . 17 | | 5.4 | Effectiveness of smoke / hot gas extraction – Gas flow and pressure maintenance during | 47 | | 5.5 | smoke and heat extraction test | . 17
17 | | 5.6 | Ability to open under environmental conditions: opening under wind, snow load within a giv | . I <i>I</i>
/An | | 0.0 | time | | | 5.7 | Durability of operational reliability | | | 6 | Assessment and verification of constancy of performance – AVCP | 17 | | 6.1 | General | | | 6.2 | Type Testing | | | 6.2.1 | General | | | 6.2.2 | Test samples, testing and compliance criteria | | | 6.2.3 | Test reports | | | 6.3 | Factory production control (FPC) | | | 6.3.1 | General | . 19 | | 6.3.2 | Requirements | | | 6.3.3 | Product specific requirements | | | 6.3.4 | Initial inspection of factory and of FPC | | | 6.3.5 | Continuous surveillance of FPC | | | 6.3.6 | Procedure for modifications | . 28 | | 6.3.7 | One-off products, pre-production products (e.g. prototypes) and products produced in very low quantity | .28 | |-------------|--|-----| | 7 | Marking, labelling and packaging | .29 | | Annex | A (normative) Criteria to determine family of fans in order to select the sizes to be tested | .31 | | A .1 | Reduction of numbers of tests for PSHC ventilators forming a product range | .31 | | A.2 | Motors | .33 | | A.2.1 | General | .33 | | A.2.2 | Motor Type 1: Motor out of airstream and Impeller not mounted on shaft | .34 | | A.2.3 | Motor Type 2: Centrifugal fans with impeller mounted on the motor shaft | .35 | | A.2.4 | Motor Type 3: Fans with motor inside the airstream without cooling | .35 | | A.2.5 | Motor Type 4: Motors out of airstream but within fan casing | .36 | | A.2.5.1 | General | .36 | | A.2.5.2 | Motor Type 4.1 | .36 | | A.2.5.3 | Motor Type 4.2 | .37 | | A.3 | Combined testing | .37 | | A.3.1 | General rule | .37 | | A.3.2 | Specific rule for an axial fan | .38 | | A.4 | Determination of highest stresses in impellers | .38 | | A.4.1 | PSHC Ventilators with geometrically similar impellers | .38 | | A.4.2 | Fans with impellers that are not geometrically similar | .40 | | A.4.2.1 | Axial impellers | .40 | | A.4.2.1 | .1 Centrifugal force | .40 | | A.4.2.1 | .2 Fastenings or welds | .42 | | A.4.2.1 | .3 Hub/back-plate/shroud stresses | .43 | | A.4.2.2 | Centrifugal impellers | .45 | | A.4.2.2 | .1 Centrifugal force | .45 | | A.4.2.2 | .2 Blade bending moment | .46 | | A.4.2.2 | .3 Comparative blade stresses | .46 | | A.4.2.2 | .4 Blade joint stress | .48 | | A.5 | Assessment of changes in a fan family | .48 | | A.5.1 | Assessment of motor change | .48 | | A.5.2 | Assessment of fan component change | .49 | | Annex | B (normative) Criteria to determine a family of motors in order to select the sizes to be tested | 15t | | B.1 | Reduction of numbers of tests for a motor family | .51 | | B.2 | Assessment of changes in a motor family | .51 | | B.2.1 | Assessment for changing a family of motors in a family of fans | .51 | | B.2.2 | Assessment for changing components in a family of motors | .51 | | B.2.3 | Assessment of changes using Annex D | .56 | | B.2.4 | Normative list of motor components | .56 | | Annex | C (normative) Test method for the determination of fire resistance of powered smoke and heat control ventilators (fans) | 61 | |---------|---|----| | C.1 | Principle | 61 | | C.2 | Apparatus | 61 | | C.3 | Preparation | 63 | | C.3.1 | Axial Fan running (tip) clearance | 63 | | C.3.2 | Measuring of running clearance | 63 | | C.3.3 | Installation in furnace depending on the intended application categories | 64 | | C.4 | Procedure | 66 | | C.4.1 | General conditions | 66 | | C.4.2 | Warm up period | 66 | | C.4.3 | Heat up period | 66 | | C.4.4 | High temperature test | 66 | | C.4.5 | High temperature test in accordance with temperature time curve | 67 | | C.5 | Compliance criteria | 67 | | C.6 | Test report | 67 | | C.6.1 | Prepare a test report after completion of each test including the following information: | 67 | | Annex | D (normative) Test methods for electric motors to determine the impact of the changes on to product characteristics | | | D.1 | Principle | 70 | | D.2 | Tests in association with a generator or another load | 70 | | D.2.1 | Modulated Frequency Method (MFM) | 70 | | D.2.2 | Apparatus for testing with a generator | 71 | | D.2.2.1 | Test installation | 71 | | D.2.2.2 | Specifications for bearing load | 71 | | D.2.2.3 | Temperature measurements | 72 | | D.2.2.4 | Electrical measurements | 72 | | D.2.3 | Test specimens | 72 | | D.2.4 | Test procedure | 72 | | D.2.4.1 | General conditions | 72 | | D.2.4.2 | Warm up period | 72 | | D.2.4.3 | High temperature test | 73 | | D.3 | Test report | 73 | | Annex | E (normative) Test method for assessing the response delay and ability to open under environmental conditions | 75 | | E.1 | Objective of test | 75 | | E.2 | Test apparatus | 75 | | E.3 | Test specimen | 75 | | E.4 | Test procedure | 75 | | E.5 | Evaluation of test results | 75 | | Annex | F (informative) Explanatory notes | .76 | |---------|--|-----| | F.1 | General | .76 | | F.2 | Explanation for A.4.4.3 | .76 | | F.3 | Origin of power coefficients in D.2.4.2 | .79 | | F.4 | Consideration about frequency converter driving | .80 | | F.5 | Consideration regarding A.1, f) – scaling factors | .82 | | F.6 | Consideration regarding B.2.2: change of type of bearing | .82 | | F.6.1 | General | .82 | | F.6.2 | Bearing ability to pass the smoke venting test | .82 | | F.6.3 | Parameters to consider during the heat up test | .83 | | F.6.4 | How to select motor sizes | .84 | | F.6.5 | How to select motor size in vertical position | .84 | | F.7 | Consideration for changing material inside the fan | .85 | | F.7.1 | Material features | .85 | | F.7.1.1 | Mechanical properties | .85 | | F.7.1.2 | Technological properties | .85 | | F.7.1.3 | Physical properties | .85 | | F.7.1.4 | Tensile strength | .86 | | F.7.1.5 | Compression stress, shear stress and twisting | .86 | | F.7.1.6 | Hardness | .86 | | F.7.1.7 | Creep | .86 | | F.7.1.8 | Behaviour at low temperatures | .86 | | F.7.1.9 | Fatigue | .86 | | F.7.2 | Technological properties | .87 | | F.7.2.1 | Abrasive resistance | .87 | | F.7.2.2 | Formability | .87 | | F.7.3 | Physical properties | .87 | | F.7.3.1 | Density | .87 | | F.7.3.2 | Coefficient of thermal expansion | .87 | | F.7.3.3 | Thermal diffusivity | .87 | | F.7.3.4 | Elastic properties | .87 | | F.8 | Complementary information on Installation / Application | .88 | | Annex | G (informative) General guidance for installation and maintenance | .91 | | G.1 | Product, installation and maintenance information (documentation) | .91 | | G.1.1 | Product specification | .91 | | G.1.2 | Installation information | .91 | | G.1.3 | Maintenance information | .91 | | Annex | ZA (informative) Clauses of this European Standard addressing the provisions of the EU Construction Products Regulation | .92 | ### This is a free page sample. Access the full version online. $\pmb{\text{I.S. EN 12101-3:2015}}$ ## EN 12101-3:2015 (E) | ZA.1 | ope and relevant characteristics | 92 | |---------|---|-----| | ZA.2 | ocedure for AVCP of the powered heat and smoke control ventilators (fans) | 93 | | ZA.2.1 | stem(s) of AVCP | 93 | | ZA.2.2 | claration of performance (DoP) | 94 | | ZA.2.2. | General | 94 | | ZA.2.2. | Content | 95 | | ZA.2.2. | Example of DoP | 95 | | ZA.3 | marking and labelling | 97 | | Bibliog | ohy | 100 | ## **European foreword** This document (EN 12101-3:2015) has been prepared by Technical Committee CEN/TC 191 "Fixed firefighting systems", the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2016, and conflicting national standards shall be withdrawn at the latest by May 2017. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 12101-3:2002. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s) and/or EU Regulation(s). For relationship with EU Regulation(s), see informative Annex ZA, which is an integral part of this document. This European Standard is part of the package of the European Standards EN 12101 covering smoke and heat control systems. EN 12101, Smoke and heat control systems, consists of the following parts: - Part 1: Specification for smoke barriers Requirements and test methods - Part 2: Specification for natural smoke and heat control ventilators - Part 3: Specification for powered smoke and heat control ventilators - Part 4: Natural smoke and heat control ventilation systems Installation and test methods (published as CEN/TR 12101-4) - Part 5: Design and calculation for smoke and exhaust ventilation systems (published as CEN/TR 12101-5) - Part 6: Specification for pressure differential systems- kits - Part 7: Smoke duct sections - Part 8: Smoke control dampers - Part 10: Power supplies - Part 11: Smoke control in car parks - Part 12: SHEVS Time dependent fires - Part 13: Pressure differential systems (PDS) design and calculation methods, acceptance testing, maintenance and routine testing of installation According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Iralay, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. ## Introduction Smoke and heat control ventilation systems create a smoke free layer above the floor by removing smoke and thus improve the conditions for the safe escape and/or rescue of people and animals and the protection of property and permit the fire to be fought while still in its early stages. They also exhaust hot gases released by a fire in the developing stage. In specific cases some fans are used to convey smoke (e.g. in tunnels or car parks). These fans, called jet fans or impulse fans are also within the scope of this standard. The use of smoke and heat control ventilation systems to create smoke free areas beneath a buoyant smoke layer has become widespread. Their value in assisting in the evacuation of people from construction works, reducing fire damage and financial loss by preventing smoke logging, facilitating fire fighting, reducing roof temperatures and retarding the lateral spread of fire is firmly established. For these benefits to be obtained it is essential that smoke and heat control ventilators operate fully and reliably whenever called upon to do so during their installed life. A heat and smoke control ventilation system is a scheme of safety equipment intended to perform a positive role in a fire emergency. Components for smoke and heat control systems should be installed as part of a properly designed smoke and heat control system. Smoke and heat control ventilation systems help to: - keep the escape and access routes free from smoke; - facilitate fire fighting operations by creating a smoke free layer; - delay and/or prevent flashover and thus full development of the fire; - protect equipment and furnishings; - reduce thermal effects on structural components during a fire; - reduce damage caused by thermal decomposition products and hot gases. Depending on the design of the system and the ventilator, powered or natural smoke and heat ventilators can be used in a smoke and heat control system. Powered smoke and heat control ventilators (fans) can be installed in the roof or upper part of walls of building or in a ducted system with the ventilator inside or outside the smoke reservoir or in a plant room. Powered smoke and heat control ventilation systems should operate based on powered ventilators (fans). The performance of the powered smoke and heat control system depends on: - the temperature of the smoke; - size, number and location of the exhaust openings; - the wind influence; - size, geometry and location of the inlet air openings; - the time of actuation; - the location and conditions of the system (for example arrangements and dimensions of the building). Smoke and heat control ventilation systems are used in buildings or construction works where the particular (large) dimensions, shape or configuration make smoke control necessary. | _ | single and multi-storey shopping malls; | |---|--| | | single and multi-storey industrial buildings and warehouses; | | _ | atria and complex buildings; | | _ | enclosed car parks; | | _ | stairways; | | _ | tunnels; | | _ | theatres. | Typical examples are: ## 1 Scope This European Standard specifies the products characteristics of powered smoke and heat control ventilators (fans) intended to be used as part of a powered smoke and heat control ventilation system in construction works. It provides test and assessment methods of the characteristics and the compliance criteria of the test assessment results. This European Standard applies to the following: - fans for smoke and heat control ventilation; - b) impulse/jet fans for smoke and heat control ventilation; #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 1363 (all parts), Fire resistance tests EN 13501-4, Fire classification of construction products and building elements — Part 4: Classification using data from fire resistance tests on components of smoke control systems EN 60034-1, Rotating electrical machines - Part 1: Rating and performance (IEC 60034-1) EN 60034-2-1, Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles) (IEC 60034-2-1) EN 60034-18-41, Rotating electrical machines - Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters - Qualification and quality control tests (IEC 60034-18-41) EN 60085, Electrical insulation - Thermal evaluation and designation (IEC 60085) CLC/TS 60034-17, Rotating electrical machines - Part 17: Cage induction motors when fed from converters - Application guide (IEC 60034-17) EN ISO 204, Metallic materials - Uniaxial creep testing in tension - Method of test (ISO 204) EN ISO 5167 (all parts), Measurement of fluid flow by means of pressure differential devices EN ISO 5801, Industrial fans - Performance testing using standardized airways (ISO 5801 EN ISO 6892-1, Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO 6892-1) EN ISO 6892-2, Metallic materials - Tensile testing - Part 2: Method of test at elevated temperature (ISO 6892-2) ISO 281, Rolling bearings — Dynamic load ratings and rating life ISO 834-1, Fire-resistance tests — Elements of building construction — Part 1: General requirements ISO 1099, Metallic materials — Fatigue testing — Axial force-controlled method | | This is a free preview. | Purchase the e | entire publication | at the link below: | |--|-------------------------|----------------|--------------------|--------------------| |--|-------------------------|----------------|--------------------|--------------------| **Product Page** - Dooking for additional Standards? Visit Intertek Inform Infostore - Dearn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation