Customer Support: 131 242

  • There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM D 6591 : 2018

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Test Method for Determination of Aromatic Hydrocarbon Types in Middle Distillates—High Performance Liquid Chromatography Method with Refractive Index Detection

Available format(s)

Hardcopy , PDF

Superseded date

05-08-2019

Language(s)

English

Published date

01-10-2018

This test method covers a high performance liquid chromatographic test method for the determination of mono-aromatic, di-aromatic, tri+-aromatic, and polycyclic aromatic hydrocarbon contents in diesel fuels and petroleum distillates boiling in the range from 150 °C to 400 °C.

1.1This test method covers a high performance liquid chromatographic test method for the determination of mono-aromatic, di-aromatic, tri+-aromatic, and polycyclic aromatic hydrocarbon contents in diesel fuels and petroleum distillates boiling in the range from 150 °C to 400 °C. The total aromatic content in % m/m is calculated from the sum of the corresponding individual aromatic hydrocarbon types.

Note 1:Aviation fuels and petroleum distillates with a boiling point range from 50 °C to 300 °C are not determined by this test method and should be analyzed by Test Method, D6379 or other suitable equivalent test methods.

1.2The precision of this test method has been established for diesel fuels and their blending components, containing from 4 % to 40 % (m/m) mono-aromatic hydrocarbons, 0 % to 20 % (m/m) di-aromatic hydrocarbons, 0 % to 6 % (m/m) tri+-aromatic hydrocarbons, 0 % to 26 % (m/m) polycyclic aromatic hydrocarbons, and 4 % to 65 % (m/m) total aromatic hydrocarbons.

1.3Compounds containing sulfur, nitrogen, and oxygen are possible interferents. Mono-alkenes do not interfere, but conjugated di- and poly-alkenes, if present, are possible interferents.

1.4By convention, this standard defines the aromatic hydrocarbon types on the basis of their elution characteristics from the specified liquid chromatography column relative to model aromatic compounds. Quantification is by external calibration using a single aromatic compound, which may or may not be representative of the aromatics in the sample, for each aromatic hydrocarbon type. Alternative techniques and methods may classify and quantify individual aromatic hydrocarbon types differently.

1.5Fatty Acid Methyl Esters (FAME), if present, interfere with tri+-aromatic hydrocarbons. If this method is used for diesel containing FAME, the amount of tri+-aromatics will be over estimated.

1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
D 02
DocumentType
Test Method
Pages
9
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

View more information
$125.58
Including GST where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

Need help?
Call us on 131 242, then click here to start a Screen Sharing session
so we can help right away! Learn more